Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.
نویسندگان
چکیده
During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene.
منابع مشابه
مهار رشد رده سرطانی K562 با استفاده از دیواره سلولی استخراج شده از پروبیوتیکهای Saccharomyces cerevisiae و Saccharomyces boulardi به همراه نانو ذرات روی
Background: Chronic myeloid leukemia is a common cancer in human, so the goal of this study was the use of natural compound such as cell wall obtained from Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardi (S. boulardi) and zinc nanoparticles on the growth inhibition of K562 cell line. Methods: For cell wall preparation, both yeasts were cultured in a basic medium at a...
متن کاملThe Saccharomyces cerevisiae small heat shock protein Hsp26 inhibits actin polymerisation.
All cells display a response to adverse environmental conditions by inducing the synthesis of a set of proteins, the heat shock proteins (Hsps). Hsp26 belongs to the family of small heat shock proteins (sHsps). The yeast Saccharomyces cerevisiae has three major sHsps: Hsp26 [I], Hspl2 [2] and Hsp30 [3]. Small Hsps have certain common structural and regulatory charactenstics; they are induced by...
متن کاملDual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases), Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, wine, and sake. Atf1 and Atf2 localize to the endoplasmic reticulum (ER) and Atf1 is known to loca...
متن کاملUse of Non-Saccharomyces Yeasts in Bottle Fermentation of Aged Beers
Bottle fermented and brewed beers are reaching more recognition in present days due to their high sensory complexity. These beers normally are produced by an initial tank fermentation to metabolize the sugars obtaining the typical alcoholic degree, and later the foam and CO2 pressure is produced by subsequent bottle fermentation. The sensory profile is improved by the formation of some fermenta...
متن کاملThe carboxy-terminal portion of the aflatoxin pathway regulatory protein AFLR of Aspergillus parasiticus activates GAL1::lacZ gene expression in Saccharomyces cerevisiae.
AFLR, a DNA-binding protein of 444 amino acids, transactivates the expression of aflatoxin biosynthesis genes in Aspergillus parasiticus and Aspergillus flavus, as well as the sterigmatocystin synthesis genes in Aspergillus nidulans. We show here by fusion of various aflR coding regions to the GAL4 DNA-binding coding region that the AFLR carboxyl terminus contained a region that activated GAL1:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Food microbiology
دوره 57 شماره
صفحات -
تاریخ انتشار 2016